

WEB APPLICATION PENETRATION TESTING

Report for:	
Date:	

This document contains confidential information about IT systems and network infrastructure of the client, as well as information about potential vulnerabilities and methods of their exploitation. This confidential information is for internal use by the client only and shall not be disclosed to third parties.

Table of Contents

Executive Summary	1
Scope	3
Methodology	4
Severity Definition	5
Summary of Findings	6
Key Findings	7
Rate limit bypass via X-Forwarded-For	7
Broken Authentication and Session Management	8
Email disclosure via Forgot password	9
User enumeration	10
Vulnerability Lucky13 and BREACH	11
Cacheable HTTPS response	12
Appendix A. OWASP Testing Checklist	13
Appendix B. Pentesting Tools	16

Executive Summary

E-Discovery (Provider) was contracted by _____ (Client) to carry out a web application penetration test.

The application provides customers the ability to submit order requests, review design, leave feedback, etc.

The penetration test was conducted between 08.02.2021 - 26.02.2021.

The penetration test has the following objectives:

- identify technical and functional vulnerabilities
- evaluate a severity level (ease of use, impact on information systems, etc.);
- make a prioritized list of recommendations to address identified weaknesses

According to our research after performing the penetration testing, the security rating of the client's web application was identified as Low.

Scope

The following list of the information systems was the scope of the penetration testing.

#	Name	Description	Version
1.	<pre>client.com www.client.com h5.client.com openws.client.com ws-manager.client.com ws.client.com gitlab.infra.client.com registry.infra.client.com nexus.infra.client.com wiki.infra.client.com</pre>	Web	
2.	35.220.000.000 35.240.00.000 35.190.00.000 35.240.00.000 35.220.000.000 130.210.00.00	IP	
3.	api.Client.com openapi.Client.com (https://github.com/Client/Clie nt-official-api-docs)	API	

Methodology

The testing methodology is based on generally accepted industry-wide approaches to perform penetration testing for web applications (OWASP Testing Guide);

Application-level penetration tests include, at the minimum, checking for the following types of vulnerabilities:

- injections, in particular, SQL injections, NoSQL, XPath, etc.;
- Local File Inclusion (LFI), Remote File Inclusion (RFI);
- Cross-Site Scripting (XSS);
- errors in access control mechanisms (for example, unsafe direct links to objects, lack of restriction of access by URL, directory traversal and lack of restriction of user access rights to functions);
- Cross-Site Request Forgery (CSRF);
- web server configuration errors;
- incorrect error handling;
- Counteracting the compromise of authentication mechanisms and session management (Session Management Testing);

Severity Definition

The level of severity of each vulnerability is determined based on the potential impact of loss from successful exploitation as well as ease of exploitation, the existence of exploits in public access and other factors.

Severity	Description	
High	High-level vulnerabilities are easy to exploit and may provide an attacker with complete control of the affected systems, leading to significant data loss or downtime. There are exploits or PoC available in public access.	
Medium 🔲 🗖	Medium-level vulnerabilities are much harder to exploit and may not provide the same access to affected systems. Exploits or PoCs aren't available in public access. Exploitation provides only very limited access.	
Low	Low-level vulnerabilities exploitation is extremely difficult, or impact is minimal.	
Info 🔳	Information-level vulnerabilities provide an attacker with information that may assist them in conducting subsequent attacks against target information systems or against other information systems, which belong to an organization.	

Key Findings

Rate limit bypass via X-Forwarded-For

Race timit bypass via x-roiwarded-roi
#1 Description
X-Forwarded-For is a well-established HTTP header used by proxies to pas along other IP addresses in the request. This is often the same a CF-Connecting-IP, but there may be multiple layers of proxies in request path.
There is dynamically changing value can attackers do brute force 6-digit approve code and other attacks which are based on brute force method.
Evidence
Steps to reproduce:
1. Get request for restore password
2. Input some code
 Input some code Intercept request and set header X-Forwarded-For with something
value
4. The count of the number of attempts will be restored to the initia
value
Request:
POSTcom/api/user_findPwd HTTP/1.1
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:64.0) Gecko/20100101 Firefox/64.0 Accept: application/json, text/plain, */*
Accept-Language: uk-UA,uk;q=0.8,en-US;q=0.5,en;q=0.3 Referer:
Content-Type: application/x-www-form-urlencoded;charset=UTF-8
X-Forwarded-For: TEST12312X Content-Length: 150
Connection: keep-alive
Host:
loginName=bus===================================
Recommendations
 check the value of headers
- add a "one-time token"

Broken Authentication and Session Management

#2 Description

Incorrect logic in the transfer of the session between domains allows the user to intercept another user's session.

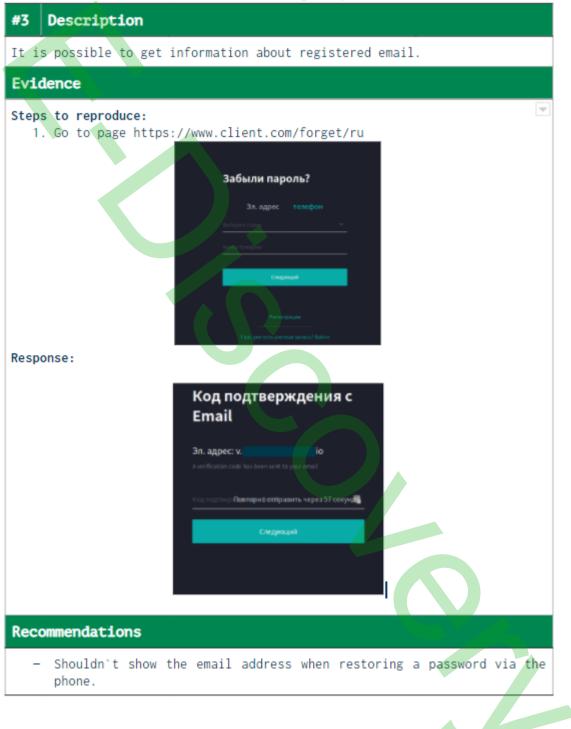
The WebSocket application at client.com is responsible for mediating the session for the main casino application, which can be located on one of the mirrors, for example, at client.com and client.com.

This functionality is used to dynamically transfer the session to different mirrors, which allows the user not to log into the system every time when changing such a mirror. Also, the WebSocket of the application on client.com does not have a built-in validation of the domain from which the session request comes, which allows getting a user session for any domain.

An example of such session interception is located at https://ps29.net/client-dwju3726ks/. This page contains the authorization.js (https://www.client.com/files/js/authorization.js) code that pinup uses for authorization.

Evidence

Steps to reproduce:


- 1. Login to any account on client domain
- 2. Go to https://ps29.net/client-dwju3726ks/

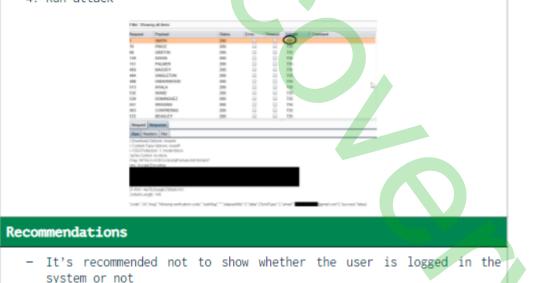
Recommendations

- Add domain validation

Email disclosure via Forgot password

User enumeration

#4 Description


The scope of this test is to verify whether it's possible to collect a set of valid usernames by interacting with the authentication mechanism of the application. This test will be useful for brute force testing, in which we verify if, given a valid username, it's possible to find a corresponding password. Often, web applications reveal when a username exists in a system, either due to a misconfiguration or as a design decision.

For example, sometimes, when we submit wrong credentials, we receive a message stating that either the username is present in the system or the provided password is wrong. The information obtained can be used by an attacker to gain a list of users in the system. This information can be used to attack the web application, for example, through a brute force or default username/password attack.

Evidence

Steps to reproduce:

- 1. Intercept request POST /api/user_findPwd
- 2. Send request to Intruder
- Set payload to loginName=<email>&loginType=1&pwdType=0
- 4. Run attack

Vulnerability Lucky13 and BREACH

#5 Description

BREACH

Short for Browser Exploit Against SSL/TLS, BREACH is a browser exploit against SSL/TLS that was revealed in late September 2011. This attack leverages weaknesses in cipher block chaining (CBC) to exploit the Secure Sockets Layer (SSL)/Transport Layer Security (TLS) protocol. The CBC vulnerability can enable man-in-the-middle (MITM) attacks against SSL in order to silently decrypt and obtain authentication tokens, thereby providing hackers access to data passed between a web server and the Web browser accessing the server.

Evidence

Scanning https://www.client.com with SSLscan

Status: Ready to scan

Other SSR up Re
 Other SSR up Re
 Other ISSR Pre
 Other

Recommendations

- Disable TLS 1.0 and make user connections using TLS 1.1 or TLS 1.2 protocols which are immune to the BEAST attack. TLS 1.0 is now considered insecure. Disabling the TLS 1.0 protocol improves the overall security.
- Avoid using TLS in CBC-mode and switch to AEAD algorithms,

Cacheable HTTPS response

#6 Description

Unless directed otherwise, browsers may store a locally cached copy of content received from web servers. Some browsers, including Internet Explorer, cache content accessed via HTTPS. If sensitive information in application responses is stored in the local cache, then this may be retrieved by other users who have access to the same computer at a future time.(Cache-control: no-store, Pragma: no-cache)

Recommendations

Add the following headers:

- Cache-control: no-store
- Pragma: no-cache

Appendix A. OWASP Testing Checklist

Category	Test Name	Result
	Information Gathering	
OTG-INFO-001	Conduct Search Engine Discovery and	Tested
	Reconnaissance for Information Leakage	
OTG-INFO-002	Fingerprint web server	Tested
OTG-INFO-003	Review Webserver Metafiles for Information	Tested
	Leakage	
OTG-INFO-004	Enumerate Applications on Web server	Tested
OTG-INFO-005	Review Webpage Comments and Metadata for	Tested
	Information Leakage	
OTG-INFO-006	Identify application entry points	Tested
OTG-INFO-007	Map execution paths through application	Tested
OTG-INFO-008	Fingerprint Web Application Framework	Tested
OTG-INFO-009	Fingerprint Web Application	Tested
OTG-INFO-010	WAF	Tested
Confi	guration and Deploy Management Testing	
OTG-CONFIG-001	Test Network/Infrastructure Configuration	Tested
OTG-CONFIG-002	Test Application Platform Configuration	Tested
OTG-CONFIG-003	Test File Extensions Handling for Sensitive	Tested
	Information	
OTG-CONFIG-004	Backup and Unreferenced Files for Sensitive	Tested
	Information	
OTG-CONFIG-005	Enumerate Infrastructure and Application	Tested
	Admin Interfaces	
OTG-CONFIG-006	Test HTTP Methods	Tested
OTG-CONFIG-007	Test HTTP Strict Transport Security	Tested
OTG-CONFIG-008	Test RIA cross domain policy	Tested
	Identity Management Testing	
OTG-IDENT-001	Test Role Definitions	N/A
OTG-IDENT-002	Test User Registration Process	Tested
OTG-IDENT-003	Test Account Provisioning Process	N/A
OTG-IDENT-004	Testing for Account Enumeration and Guessable	Tested
	User Account	
OTG-IDENT-005	Testing for Weak or unenforced username	Tested
	policy	
OTG-IDENT-006	Test Permissions of Guest/Training Accounts	N/A
OTG-IDENT-007	Test Account Suspension/Resumption Process	Tested
	Authentication Testing	
OTG-AUTHN-001	Testing for Credentials Transported over an	Tested
	Encrypted Channel	
OTG-AUTHN-002	Testing for default credentials	N/A

OTG-AUTHN-003	Testing for Weak lock out mechanism	Tested
OTG-AUTHN-004	Testing for bypassing authentication schema	Tested
OTG-AUTHN-005	Test remember password functionality	Tested
OTG-AUTHN-006	Testing for Browser cache weakness	Tested
OTG-AUTHN-007	Testing for Weak password policy	Tested
OTG-AUTHN-008	Testing for Weak security question/answer	Tested
OTG-AUTHN-009	Testing for weak password change or reset	Tested
	functionalities	
	Testing for Weaker authentication in	Tested
OTG-AUTHN-010	alternative channel	
	Authorization Testing	
OTG-AUTHZ-001	Testing Directory traversal/file include	Tested
OTG-AUTHZ-002	Testing for bypassing authorization schema	Tested
OTG-AUTHZ-003	Testing for Privilege Escalation	Tested
OTG-AUTHZ-004	Testing for Insecure Direct Object References	Tested
	Session Management Testing	
	Testing for Bypassing Session Management	Tested
OTG-SESS-001	Schema	
OTG-SESS-002	Testing for Cookies attributes	Tested
OTG-SESS-003	Testing for Session Fixation	Tested
OTG-SESS-004	Testing for Exposed Session Variables	Tested
OTG-SESS-005	Testing for Cross Site Request Forgery	Tested
OTG-SESS-006	Testing for logout functionality	Tested 👻
OTG-SESS-007	Test Session Timeout	Tested
OTG-SESS-008	Testing for Session puzzling	Tested
	Data Validation Testing	
OTG-INPVAL-001	Testing for Reflected Cross Site Scripting	Tested
OTG-INPVAL-002	Testing for Stored Cross Site Scripting	Tested
OTG-INPVAL-003	Testing for HTTP Verb Tampering	Tested
OTG- <u>INPVAL</u> -004	Testing for HTTP Parameter pollution	Tested
OTG-INPVAL-005	Testing for SQL Injection	Tested
OTG- <u>INPVAL</u> -006	Testing for LDAP Injection	Tested
OTG- <u>INPVAL</u> -007	Testing for ORM Injection	Tested
OTG-INPVAL-008	Testing for XML Injection	Tested
OTG-INPVAL-009	Testing for SSI Injection	Tested
OTG-INPVAL-010	Testing for XPath Injection	Tested
OTG-INPVAL-011	IMAP/SMTP Injection	Tested
OTG- <u>INPVAL</u> -012	Testing for Code Injection	Tested
OTG-INPVAL-013	Testing for Command Injection	Tested
OIG-THEAT-012		
UIG-THEVAL-013	Error Handling	
OTG-ERR-001	Error Handling Analysis of Error Codes Analysis of Stack Traces	Tested Tested

Cryptography		
OTG-CRYPST-001	Testing for Weak SSL/TSL Ciphers,	Tested
	Insufficient Transport Layer Protection	
OTG-CRYPST-002	Testing for Padding Oracle	Tested
OTG-CRYPST-003	Testing for Sensitive information sent via	Tested
	unencrypted channels	
	Business Logic Testing	
OTG-BUSLOGIC-001	Test Business Logic Data Validation	Tested
OTG-BUSLOGIC-002	Test Ability to Forge Requests	Tested
OTG-BUSLOGIC-003	Test Integrity Checks	Tested
OTG-BUSLOGIC-004	Test for Process Timing	Tested
OTG-BUSLOGIC-005	Test Number of Times a Function Can be Used	Tested
	Limits	
OTG-BUSLOGIC-006	Testing for the Circumvention of Work Flows	Tested
OTG-BUSLOGIC-007	Test Defenses Against Application Mis-use	Tested
OTG-BUSLOGIC-008	Test Upload of Unexpected File Types	Tested
OTG-BUSLOGIC-009	Test Upload of Malicious Files	Tested
	Client Side Testing	
OTG-CLIENT-001	Testing for DOM based Cross Site Scripting	Tested
OTG-CLIENT-002	Testing for JavaScript Execution	Tested
OTG-CLIENT-003	Testing for HTML Injection	Tested
OTG-CLIENT-004	Testing for Client Side URL Redirect	Tested
OTG-CLIENT-005	Testing for CSS Injection	Tested
OTG-CLIENT-006	Testing for Client Side Resource Manipulation	Tested
OTG-CLIENT-007	Test Cross Origin Resource Sharing	Tested
OTG-CLIENT-008	Testing for Cross Site Flashing	Tested
OTG-CLIENT-009	Testing for Clickjacking	Tested
OTG-CLIENT-010	Testing WebSockets	Tested
OTG-CLIENT-011	Test Web Messaging	Tested
OTG-CLIENT-012	Test Local Storage	Tested

Appendix B. Pentesting Tools

Scope	Tools Used
Application Security	Acunetix 11 BurpSuite 1.7.30 Owasp-zap Maltego Classic Detectify
Network Security	Sqlmap Nmap Recon-ng Nessus Nexpose