é:a https://e-discovery.ng/

i0S APPLICATION
PENETRATION TESTING

Report for:

Date:

This document contains confidential information about IT
systems and network infrastructure of the client, as well as
information about potential vulnerabilities and methods of
their exploitation. This confidential information is for
internal use by the client only and shall not be disclosed to

third parties.

¢
0

Table of Contents

Table of Contents
Executive Summary
Scope

Methodology
Severity Definition
Summary of Findings

Key Findings

7

User's credential stores locally and not encrypted in application’s

sandbox

Requests and responses stores insecure in cache.db

Insecure sending of the user’s mobile phone (area code+regname)

Weak cryptography

8
9
18
1

Input fields with sensitive data should be cleared after hiding/opening

the application
Clipboard should be disabled for fields with sensitive data

Application doesn’t have jailbreak detection mechanism

Appendix A. Automated Tools

12
13
14

16

¢
0

Executive Summary

E-Discovery (Frovider) was contracted by (Client) to carry out an i0%

application penetration test.

The application provides customers the ability to submit order requests,
review design, leave feedback, etc.

The penetration test was conducted between 08.02.2021 - 26.02.2021.

The penetration test has the following objectives:
¢ identify technical and functional vulnerabilities
e evaluate a severity level (ease of wuse, impact on information
systems, etc.);
e make a prioritized list of recommendations to address identified

weaknesses,

According to our research after performing the penetration testing, the
security rating of the client's i0S application was identified as Low.

Low Security Rating

1] 5 10
Highly Insecure Highly Secure

¢
0

Scope

The® following 1list of the information systems was the scope of the
penetration testing.

Description Version

1. 108

¢
0

Methodology

The testing methodology 1is based on generally accepted industry-wide
approaches to perform penetration testing for mobile applications - Mobile
Security Testing Guide (MSTG);

Application-level penetration tests include, at a minimum, checking for the
following types of wvulnerabilities:

¢ lack of bipmary protections;

® insecure data storage;

¢ unintended data leakage;

¢ client-side injection;

e weak encryption;

e implicit trust of all certificates;

e execution of activities using root;

e private key exposure;

e exposure of database parameters and SQL queries;

® insecure random number generator.

¢
0

Severity Definition

The level of sewerity of each wvulnerability is determined based on the
potential impact of loss from successful exploitation as well as ease of
exploitation, the existence of exploits in public access and other factors.

Severity Description

High EEEN

High-level vulnerabilities are easy to exploit and may
provide ‘an attacker with complete control of the
affected systems, leading to significant data loss or
downtime. There are exploits or PoC available in public
access.

Medium

Medium-level wulnerabilities are much harder to exploit
and may not provide the same access to affected
systems. Exploits or PoCs aren't available in public
access. Exploitation provides only very limited access.

Low HH

Low-level wvulnerabilities exploitation 1is extremely
difficult, or impact is minimal.

Info M

Information-level wvulnerabilities provide an attacker
with information that may assist them in conducting
subsequent attacks against target information systems
or against other information systems, which belong to
an organization.

¢
0

Summary of Findings

The table below shows the vulnerabilities and their severity. A total of
7 vulnerabilities were found.

Title severity

User's credential stores locally and not encrypted in Hizh
application’s sandbox o=

Requests and responses stores insecure in cache.db High
Insecure sending of the user’s mobile phone (area

code+regname)

Weak cryptography

Input fields with sensitive data should be cleared after L ow
hiding/opening the application h
Clipboard should be disabled for fields with sensitive data Low
Application doesn’t have jailbreak detection mechanism Info

Based on our understanding of the 105 application, as well as the nature of
the wvulnerabilities discovered, their exploitability, and the potential
impact we have assessed the security rating of the client's i0S application
was ldentified as Low.

The client should pay special attention to the following vulnerabilities:

1. User's credential 1is stored locally and’ not encrypted in the
application’s sandbox.

¢
g

Key Findings

mEmE User’'s credential stores locally and not
encrypted in application’s sandbox

#1 Description

Local database from
/var/mobile/Containers/Data/Application/DC648809-C5h4A-
AFEB-BVDB-49764E92938C/Library/Caches/com. CLIENT . ff stores user's
credentials.

Evidence

Steps to reproduce:

1. 5ign up/Log in to the application
2. Connect to the dewice with ssh

3. Navigate to application's sandbox
4

. Open Cache.db with any SQLite viewer, from
/Library/Caches/com.company.exchange/

Request

b0

c0

d0

e0 26 72 &r
f0 65 67 54 79 70 65 3d 30 00 OB 00 Od 00 15 00 1b | egType=0........
DO 00 1d 00 36 00 37 00 3c 00 4f 00 Sc 00 Se 00 B8d ...6.7.<. O.\. A,
10 00 96 00 98 00 ba 00 bb 00 bd 00 be 00 bf 00 c8 . L% LN LE
20 00 d1 00 d3 00 d8 00 eb OO0 f2 00 ff O1 11 01 1e | .N.O.@. &.06.%....
30 01 2a 01 35 01 44 01 56 01 62 01 66 01 99 01 d3 | .*.5.D.V.b. f. .0
40 01 da 01 de 02 49 02 4c 02 69 02 90 02 92 00 00 |.U.P.I,L.i s na
50 00 00 00 0O 02 01 00 00 OO OO 00 00 00 2b 0O 00 +

A R R R RGP R R e LT -

- application shouldn't stores locally user's credentials;

¢

”

Insecure sending of the user’s mobile phone
(area code+regname)

#2 Description

Application sends the user's mobile phone number from the “Sign up”
screen with GET method. RESTful web services should be secured to prevent
leaking credentials. Logins, passwords, security tokens, and API keys
should not appear in the URL. In POST/PUT requests sensitive data should
be transferred in the request body or request headers. In GET requests
sensitive data should be transferred in an HTTP Header.

Evidence

Steps to reproduce:

1. Run Burp Suite

Set up proxy connection on the device

Install root S5L CA on the device

Disable certificate validation with 55L KILL SWITCH 2

Intercept requests from the “Sign up” screen

- remove these requests at all or if it's important for logics -
switch them on the POST method for sending sensitive information.

[R N P R

Request:

Weak cryptography

#3 | Description

In order to exploit this weakness, an adversary must successfully return
encrypted code or sensitive data to its original unencrypted form due to
weak encryption algorithms or flaws within the encryption process.

Evidence

Steps to reproduce:

Request:

MDS5 Decryption

Enter your MDS hash below and cross your fingers :

B8eacbB7dB6f0c462fa2blel’cabdBe

Found : Test123
(hash = 6Beach87dBEf0c462ifa2b0el7cabdBe)

Recommendations

- Use modern hashing algorithms for example SHA515

¢
0

EE Input fields with sensitive data should be cleared
after hiding/opening the application

#4 | Description

This is supposed for the password and invite code fields and it will be

useful in case when a user sets data in these fields and hides the
application without a verification/login step.

Steps to reproduce:
1. Open the application on the “Sign wup”, *“Log in” or *“Change
password” screens
2. Set password
3. Hide/Open the application

- the app removes sensitive data from the input fields when
backgrounded.

¢
g

mm Clipboard should be disabled for fields with
sensitive data

Steps
1.

2.
3.

#5 Description

Clipboard is one for all systems and sensitive data of our application
can be stolen by another one.

Evidence

Recommendations

to reproduce:

Open the application on the “Sign wup”, “Log 1in” or “Change
password” screens

Select all the text in the password field

Try to copy the text

clipboard should be disabled for all the input fields working with
sensitive data.

¢
&

® Application doesn’t have jailbreak detection
mechanism

#6 Description

Should be “implemented functionally independent methods of jailbreak
detection and respond to the presence of a jailbroken device by
terminating the application or should display Warning pop-up ("Your
device appears. to be jailbroken. The security of vyour app can be
compromised. ") every start.

Evidence
Request:

IPhone-6s-5ilver:~ root# ipainstaller -1
dprecidte.Preciatels
ch.protonmail.vpn

CO.Vero.app

Second jailbreak detection mechanism is Checking file permissions. This
mechanism should try to write into locations outside of the application’s
sandbox. This mechanism should try to write into locations outside of the
application's sandbox. For example, ~this can be done by having the
application attempt to create a file in /private directory.

MSError *error;

NSString *stringToBeliritten = @"This is a test.™;
[stringToBelritten
writeToFile:@"/private/jailbreak.txt" atomically:¥ES
encoding:NSUTFBStringEncoding error:&errar];
if(error==nil){

//Device is jailbroken

return YES;

} else {

//Device is not jailbroken

[[MN5FileManager defaultManager]

removeltemAtPath:@" /private/jailbreak. txt" error:nil];

¥

Third jailbreak detection mechanism is Checking protocol handlers. For
example, an application can attempt fo open a Cydia URL. The Cydia app

¢
0

store, which-is installed by default by practically every jailbreaking
tool, installs the cydia:// protocol handler.

if([[UTApplication sharedApplication] canOpenURL:[NSURL
URLWithString:@"cydia: //package/com.example.package"]])

1

Fourth . jailbreak detection mechanism is Calling system APIs. This
mechanism should try to call the system() function with a WULL argument
on a non jailbroken device that will return "8"; doing the same on a
jailbroken device will return "1". This is since the function will check
whether /bin/sh can be accessed, and this is only the case on jailbroken
devices.

Recommendations

- The first jailbreak detection mechanism is File-based checks.

¢
0

Appendix A. Automated Tools

e s e

Application Security

Burp Suite

ettercap

SSL Kill Switch 2
Filza

keychain-dumper
ipainstaller

Needle

Log Console

Atom

DB Browser for SQLite
TestSSL

Nmap

Tested on iPad i0S 11.2.1
with Electra jailbreak

